ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
K. Praveen, M. P. Rajiniganth, A. D. Arun, R. Ananthanarayanan, N. Malathi, P. Sahoo, N. Murali
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 127-137
Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A12547
Articles are hosted by Taylor and Francis Online.
We present an unconventional but high-performance differential pressure (DP) monitoring instrument constructed using a new class of sensor, i.e., a pulsating sensor developed in-house. This instrument of unique design is of industrial grade, and it is specially made for online monitoring of pressure in the Prototype Fast Breeder Reactor (PFBR), located in Kalpakkam, India. It measures pressure in two different ranges - 0 to 25 mbars (0 to 2.5 kPa) and 0 to 60 mbars (0 to 6.0 kPa) - using two specially designed capacitance-based robust probes made of stainless steel (Type 304L). The performance of this innovative instrument using both probes was thoroughly investigated at ambient room temperature as well as at elevated temperatures (above 30°C to 60°C) in order to assess its suitability for reactor application. The precision, sensitivity, response time, and lowest detection limit of measurement using this pulsating DP monitoring instrument are <0.01 mbars (0.001 kPa), 423 Hz/mbar (4230 Hz/kPa), [approximately]5 s, and 0.07 mbars (0.007 kPa), respectively. The influence of temperature up to 60°C on the measured parameters was found to be insignificant. A calibration technique has been evaluated to calibrate these pressure sensors.