ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Keith C. Bledsoe, Jeffrey A. Favorite, Tunc Aldemir
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 106-126
Radiation Transport and Protection | doi.org/10.13182/NT176-106
Articles are hosted by Taylor and Francis Online.
Determining the components of a radioactive source/shield system using the system's radiation signature, a type of inverse transport problem, is one of great importance in homeland security, material safeguards, and waste management. Here, the Levenberg-Marquardt (or simply "Marquardt") method, a standard gradient-based optimization technique, is applied to the inverse transport problems of interface location identification, shield material identification, source composition identification, and material mass density identification (both separately and combined) in multilayered radioactive source/shield systems. One-dimensional spherical problems using leakage measurements of neutron-induced gamma-ray lines and two-dimensional cylindrical problems using flux measurements of uncollided passive gamma-ray lines are considered. Gradients are calculated using an adjoint-based differentiation technique that is more efficient than difference formulas. The Marquardt method is iterative and directly estimates unknown interface locations, source isotope weight fractions, and material mass densities, while the unknown shield material is identified by estimating its macroscopic gamma-ray cross sections. Numerical test cases illustrate the utility of the Marquardt method using both simulated data that are perfectly consistent with the optimization process and realistic data simulated by Monte Carlo.