ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Aung Tharn Daing, Myung-Hyun Kim
Nuclear Technology | Volume 176 | Number 1 | October 2011 | Pages 40-56
Technical Paper | Second Seminar on Accelerated Testing of Materials in Spent Nuclear Fuel and High-Level Waste Storage Systems / Fission Reactors | dx.doi.org/10.13182/NT176-40
Articles are hosted by Taylor and Francis Online.
The negative impact of a boron dilution accident on the safety of a current pressurized water reactor (PWR) initiated investigations with the aim of checking the feasibility of reduced boron concentration operation. In addition, reduction of the maximum boron concentration in a PWR is a practical and feasible means to substantially reduce the radiation dose to operators and to minimize corrosion damage. Four types of integral burnable absorbers have been considered: gadolinium, integral fuel burnable absorber (IFBA), erbia, and alumina boron carbide. Under consideration of four different kinds of fuel assemblies (FA), four core design candidates were developed by applying current PWR OPR-1000 technology and by keeping major engineering design constraints and the equivalent fuel enrichment level used in the reference core (REF) design. However, an optimal design was targeted to achieve comparable discharge burnup as well as favorable design safety parameters. The comparative analysis between the REF and the optimal core designs is presented here. One of the designs is suggested as the most promising and favorable low boron core (LBC) design in this framework. The proper combination of axial and radial enrichment zoning patterns plus a mixture of fresh FAs with depleted assemblies in an LBC design candidate with an IFBA-bearing FA at equilibrium cycle could bring a two times narrower axial offset variation than that of the REF design, maintain an acceptable power peaking factor [approximately]23% lower than the design limit, and achieve higher fuel burnup. It was observed that this optimal LBC design could comply with current OPR-1000 reactor acceptance criteria associated with smooth reactivity swing, more flattened power distribution, and desired limiting safety parameters despite an 18% loss of shutdown reactivity worth at beginning of cycle when compared to the REF design.