ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
G. K. Pandey, I. Banerjee, G. Padmakumar, C. Anandababu, K. K. Rajan, G. Vaidyanathan, P. Kalyanasundaram, S. C. Chetal, Baldev Raj
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 692-699
Technical Note | NURETH-13 Special / Fission Reactors | doi.org/10.13182/NT11-A12516
Articles are hosted by Taylor and Francis Online.
A sodium-cooled, 500-MW(electric) prototype fast breeder reactor (PFBR) is under construction in Kalpakkam, India. The PFBR core houses various subassemblies that are supported vertically inside the core by the sleeves provided in the grid plate. A small radial gap exists between the grid plate sleeve and the foot to facilitate easy handling of subassemblies. It is natural that there will be some leakage flow through this radial gap into the hot and cold pools of the PFBR. To minimize this leakage flow, top and bottom labyrinths are provided on the foot of the subassemblies. The total leak flow rate permitted from the top labyrinth is 195 kg/s, whereas the leak flow rate allowed through the bottom labyrinth is 436 kg/s. Labyrinth-type sealing devices have been developed by carrying out experimental studies. Based on various parametric studies, the labyrinth geometry was optimized. It was found that apart from the clearance between the foot and sleeve, important parameters affecting pressure drop are groove profile, groove pitch, groove-depth-to-width ratio, etc. Taking into account the outcome of these studies, helical square grooved labyrinths have been designed and manufactured for PFBR. This paper presents the details of the similarity criteria followed, experimental methodology applied, and results obtained from the experiments along with their transposability to reactor conditions.