ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Robert P. Martin
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 652-662
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT175-652
Articles are hosted by Taylor and Francis Online.
This paper describes a general methodology for quantifying the importance of specific phenomenological elements to analysis measures evaluated from nonparametric best-estimate plus uncertainty evaluation methodologies. The principal objective of an importance analysis is to reveal those uncertainty contributors having the greatest influence on key analysis measures. This characterization supports the credibility of the uncertainty analysis, the applicability of the analytical tools, and even the generic evaluation methodology through the validation of the engineering judgments that guided the evaluation methodology development. A demonstration of the importance analysis is provided using data from a sample problem considered in the development of AREVA's realistic large-break loss-of-coolant (LOCA) methodology. The results are presented against the original large-break LOCA phenomena identification and ranking table developed by the technical program group responsible for authoring the code scaling, applicability, and uncertainty methodology.