ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hideki Kamide, Jun Kobayashi, Kenji Hayashi
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 628-640
Technical Paper | NURETH-13 Special / Fission Reactors | doi.org/10.13182/NT11-A12511
Articles are hosted by Taylor and Francis Online.
Natural circulation plays a significant role in the decay heat removal function of a sodium-cooled reactor. A recent design of the Japan Sodium-Cooled Fast Reactor (JSFR) fully uses natural circulation for a decay heat removal system (DHRS). A dipped heat exchanger (DHX) is immersed in the reactor upper plenum as the DHRS. The DHX provides cold sodium in the upper plenum during the decay heat removal operation. This cold sodium covers the top of the core under the low-flow-rate conditions of natural circulation. Several water experiments of natural circulation in fast reactors revealed that the cold fluid in the reactor upper plenum might partially and temporally penetrate into the low power core channels, e.g., the radial blanket fuel subassemblies. Sodium experiments were carried out to find the onset conditions and the penetration depth of such partial reverse flow driven by buoyancy force. A blanket subassembly and the upper plenum were modeled in the test section including the axial upper neutron shielding of the subassembly. The experimental parameters were the temperature difference between the hot upward flow in the channel and the cold fluid in the upper plenum and the flow velocity in the channel. The onset conditions of the penetration flow were correlated with Gr and Re numbers as well as with basic water experiments. The observed penetration depths were limited to the upper axial neutron shielding of the subassembly.