ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Ki Yong Choi, Hyun Sik Park, Seok Cho, Kyoung Ho Kang, Nam Hyun Choi, Won Pil Baek, Yeon Sik Kim
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 604-618
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12509
Articles are hosted by Taylor and Francis Online.
The direct vessel injection (DVI)-adopted power plant APR1400 considers a DVI line break among the analyzed small-break loss-of-coolant accidents in safety analysis. The first-ever integral effects test database for various DVI line break sizes from 5% to 100% was established with the Korea Atomic Energy Research Institute's Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS) test facility. This database enhances our physical understanding of the major thermal-hydraulic behaviors of the APR1400 during DVI line break accidents, and it can also be used to examine the prediction capabilities and identify any deficiencies in the existing best-estimate safety analysis codes. Effects of the break size were experimentally investigated, and the best-estimated MARS code was assessed against the experimental database. On the whole, the prediction of the MARS code shows a good agreement with the measured data. However, the code predicted a higher core level than the data just before a loop seal clearing occurs, and it also produced a more rapid decrease in the downcomer water level than the data. These disagreements are the expected consequence of uncertainties in predicting countercurrent flow or condensation phenomena in a downcomer region. The present integral effects test data will be used to support the present conservative safety analysis methodology and to develop a new best-estimate safety analysis methodology on the DVI line break accidents of the APR1400.