ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Pascal Lemaitre, Emmanuel Porcheron, Amandine Nuboer
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 553-571
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12506
Articles are hosted by Taylor and Francis Online.
During the course of a hypothetical severe accident in a nuclear power plant, spray may be activated in order to reduce static pressure in the containment. The Institut de Radioprotection et de Sûreté Nucléaire (IRSN) has developed the TOSQAN experiment to provide a better understanding of the heat transfer and mass transfer that take place between a spray and the surrounding confined gas in such a situation. This paper studies how the temperature of the spray at the injection point influences the dynamics of a test. To carry out this analysis, we performed two spray tests: spray test 101 (ST101), which served as a reference, and spray test 107 (ST107), which had exactly the same initial and boundary conditions except for the temperature of the spray at the injection point, which varied from 25°C to 58°C. First, we present the entire scenario for ST101 and ST107 and the results of the tests. We then focus our analysis on the intercomparison of the thermal-hydraulic behavior induced by the spray temperature at the injection point and the wall temperature. This intercomparison is divided into two parts: global and local.