ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
E. Merzari, H. Ninokata, R. Mereu, E. Colombo, F. Inzoli
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 538-552
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT10-148
Articles are hosted by Taylor and Francis Online.
Three-dimensional bounded jets are important in a variety of engineering applications. In nuclear engineering they are present in critical parts of several types of reactors (e.g., high-temperature gas-cooled reactors and boiling water reactors). The simulation of parallel jets through steady-state computational fluid dynamics has often proved to be problematic, in particular, when identical jets are simulated. In the present work the simulation of parallel jet mixing by the unsteady Reynolds-averaged Navier-Stokes (URANS) methodology has been carried out. Such methodology has the potential to improve the results of steady-state simulations at a limited computational cost. The experimental setup of Kunz et al., consisting of five parallel pipe jets mixing in a rectangular confinement, has been chosen as a benchmark test because of its similarity to the geometry of the IRIS reactor.The ensemble-averaged time-dependent Navier-Stokes equations have been solved through the finite volume code STAR-CD 4.06.Several computational models, mesh types, and resolutions have been tried. The results confirm that steady-state calculations tend to underestimate the spreading (mixing) of the jets. In particular, the spreading is acceptable in the near inlet region, while a strong discrepancy is observed far from the inlet. The results of the transient simulations indicate a stable oscillatory behavior downstream from the jet inlets, and the results are in better agreement with the test data. Additional large-eddy simulation calculations performed with the code FLUENT 6.3.26 have also been carried out in order to provide further insight into the URANS methodology results.