ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Y. Liao, S. Guentay, D. Suckow
Nuclear Technology | Volume 175 | Number 3 | September 2011 | Pages 510-519
Technical Paper | NURETH-13 Special / Thermal Hydraulics | doi.org/10.13182/NT11-A12502
Articles are hosted by Taylor and Francis Online.
The once-through mode of steam generator reflux condensation in the presence of noncondensable gases and/or aerosols in loss-of-coolant accident scenarios is introduced. The plausible severe accident scenarios associated with once-through reflux condensation are analyzed with MELCOR to demonstrate the background and safety significance of this phenomenon. An analytical model for once-through reflux condensation with noncondensables inside one single U-tube is developed using the heat and mass transfer analogy approach. The conditions for partial condensation inside the single U-tube can be determined with this model. The progress of modification to the ARTIST test facility to experimentally study the tube-to-tube nonuniform behavior of once-through reflux condensation inside a U-tube bundle is reported.