ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
D. Kontogeorgakos, F. Tzika, I. E. Stamatelatos
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 435-444
Technical Paper | Radiation Transport and Protection | dx.doi.org/10.13182/NT175-435
Articles are hosted by Taylor and Francis Online.
A computational method for the radiological characterization of the Greek Research Reactor (GRR-1) core supporting grid plate is presented. It is based on three-dimensional Monte Carlo neutron and photon transport simulations, analytical radionuclide inventory calculations, and measured gamma dose rates. The spatial distribution of neutron fluxes and spectra were derived by an implicit MCNP reactor core model. The radionuclide inventory was estimated using the FISPACT code. The associated source term was included in an accurate MCNP model of the grid plate assembly deriving the resulting gamma dose rates. The dominant gamma dose-producing nuclide was 60Co generated by activation of cobalt impurity in the stainless steel parts. The cobalt impurity concentration in the stainless steel parts was determined on the basis of best agreement between gamma dose rate calculations and measurements. The specific activity of grid plate components was evaluated as a function of cooling time after reactor shutdown. The proposed methodology provides a useful tool for work planning, control of occupational exposure and waste management during reactor renovation, and maintenance or decommissioning activities.