ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Su-Jong Yoon, Chang-Yong Jin, Min-Hwan Kim, Goon-Cherl Park
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 419-434
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT11-A12313
Articles are hosted by Taylor and Francis Online.
An accurate prediction of core bypass flow is of great importance in the design of very high temperature reactor (VHTR) cores in terms of the fuel thermal margin and safety. In the present study, a unit-cell experiment and computational fluid dynamics (CFD) analysis were carried out to evaluate the amount and distribution of core bypass flow. This study examined the effects of the inlet mass flow rate, block combinations, and thickness of the bypass gap. The prediction capability of the CFD code FLUENT was validated by the unit-cell experimental result. The analysis was extended to the entire core region. In this simulation, a quarter core was simulated using the nonconformal grid method to reduce the computational cost and time. The accuracy and applicability of the nonconformal grid method were assessed from the experimental results and comparative simulation. In conclusion, the flow distribution in the VHTR core was evaluated by the CFD core model with low error and computational cost.