ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Young S. Ham, Shivakumar Sitaraman
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 401-418
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-A12312
Articles are hosted by Taylor and Francis Online.
A novel methodology to detect diversion of spent fuel from pressurized water reactors (PWRs) has been developed in order to address a long unsolved safeguards verification problem for an international safeguards organization such as the International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly (SFA) and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines, and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed SFA. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the SFA will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers.Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR SFAs were performed, and they validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the IAEA goal that for SFAs that can be dismantled at the facility - which is essentially the case for most PWR fuel - the partial defect test used should assure that at least half the fuel pins are present in each SFA. The methodology does not rely on any operator-provided data like burnup or cooling time and does not require movement of the SFA from the storage rack in the spent-fuel pool.