ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Robert Petroski, Benoit Forget, Charles Forsberg
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 388-400
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT11-A12311
Articles are hosted by Taylor and Francis Online.
In a breed-and-burn (B&B) reactor, the reactor is first started with enriched uranium or other fissile material but thereafter can be refueled with natural or depleted uranium. B&B reactors have the potential to achieve >10% uranium utilization in a once-through fuel cycle versus <1% for light water reactors. A newly developed method for analyzing B&B reactors - the "neutron excess" concept - is used to determine the minimum amount of startup fuel needed to establish a desired equilibrium cycle in a minimum burnup B&B reactor. Here, a minimum burnup B&B reactor is defined as one in which neutron leakage is minimized and feed fuel can be discharged at uniform burnup. The neutron excess concept reformulates the k-effective of a system in terms of material depletion quantities: the total number of neutrons absorbed and produced by a given volume of fuel, which are termed "neutron excess quantities." This concept is useful because neutron excess quantities are straightforward to estimate using simple one-dimensional (1-D) and zero-dimensional (0-D) models. A set of equations is developed that allows the quantity of starter fuel needed to establish a given B&B equilibrium cycle to be expressed in terms of neutron excess quantities. A simple 1-D example of a sodium-cooled, metal fuel reactor with a startup enrichment of 15% is used to illustrate how the method is applied. An estimate for the required amount of starter fuel based on a 0-D depletion model is found to differ by only 3% from the actual amount computed using the 1-D example model.