ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Gregory A. Johnson
Nuclear Technology | Volume 175 | Number 2 | August 2011 | Pages 371-387
Technical Paper | Fission Reactors | doi.org/10.13182/NT11-A12310
Articles are hosted by Taylor and Francis Online.
A study was performed to examine power conversion system (PCS) options for the next generation nuclear plant, a very high temperature gas-cooled reactor. The purpose of the study was to provide insight into which PCS should be used and how should it be coupled to the reactor: direct or indirect. Seven PCSs were examined: direct helium Brayton, indirect helium Brayton, supercritical CO2 (SCCO2), cascaded SCCO2, combined-cycle gas turbine (CCGT), subcritical steam-Rankine, and supercritical steam-Rankine with double reheat. The results of the study show that the SCCO2 cycles are very promising and warrant further development, but the relative immaturity precludes it as a short-term option. Further, the results show a relative unattractiveness of the Brayton cycles when compared to the SCCO2 cycles. The best short-term options were the steam-Rankine cycles. The supercritical steam-Rankine cycle gave the best performance of the two. The CCGT was the most costly and provided little performance advantage over the supercritical steam-Rankine cycle. Issues associated with closed-loop operation, high-temperature compressor inlet temperature, and potential nitriding from the He/N2 working fluid cast uncertainty on the maturity of this cycle.