ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Kenneth Hoar, Piotr Nowinski, Vernon Hodge, James Cizdziel
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 351-359
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Environmental Effects of Nuclear Technology | dx.doi.org/10.13182/NT11-A12307
Articles are hosted by Taylor and Francis Online.
Rock varnish samples were collected near three point sources of air pollution to determine if the varnish contained a record of recent air pollution. Samples were collected as follows: downwind of the Nevada Test Site (NTS); in the fallout pattern of the shuttered Mohave Power Plant, located in Laughlin, Nevada; and, near the operating Reid-Gardner Power Plant, just east of Las Vegas, Nevada. Analysis of the NTS rock varnish shows 240Pu/239Pu mass ratios as low as 0.0592 ± 0.0003 and 241Pu/239Pu ratios as low as 0.00063 ± 0.00004, compared to worldwide values of 0.18 ± 0.01 and 0.009 ± 0.002, respectively, clearly indicating that the varnish can be used as a forensic tool for identifying the source of air pollution, in this case the NTS. The samples collected in the plumes of the coal-fired power plants contain thorium and uranium, and have 232Th/238U mass ratios from 1 to 30, and concentrations from 5 to 755 ppm for Th and 1 to 578 ppm for U. The highest concentrations of these elements occur together at locations that implicate the power plants; however, additional samples would be required to demonstrate unequivocally that the power plants are the sources. Overall, it is apparent that rock varnish can be utilized as a passive monitor to investigate recent air pollution.