ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
R. J. Sheu, Y. F. Chen, S. H. Jiang, J. N. Wang, U. T. Lin
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 335-342
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation and Protection | dx.doi.org/10.13182/NT11-A12305
Articles are hosted by Taylor and Francis Online.
This study reevaluates the dose rates at the site boundary of an independent spent-fuel storage installation (ISFSI) using the MAVRIC computational sequence in the SCALE6 code package. Based on advanced variance-reduction techniques and powerful geometry modeling capabilities, MAVRIC can tackle this large ISFSI shielding problem by directly simulating the radiation transport in a full-scale model. This study started with a benchmark calculation of a single storage cask and then investigated the impact of a fully loaded ISFSI on the dose rates at the site boundary. Because of the short distance to the nearest site boundary, additional shielding to the cask itself or the site is necessary to meet the stringent design dose limit. Compared to the two-step cask-by-cask approach adopted in the original safety analysis report, this method of analyzing the site boundary doses is straightforward and efficient enough to allow us to evaluate the effect of the cask design modification and to test various options for further improvement.