ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Kenneth D. Jarman, Erin A. Miller, Richard S. Wittman, Christopher J. Gesh
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 326-334
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT10-72
Articles are hosted by Taylor and Francis Online.
Locating illicit radiological sources using gamma-ray or neutron detection is a key challenge for both homeland security and nuclear nonproliferation. Localization methods using an array of detectors or a sequence of observations in time and space must provide rapid results while accounting for a dynamic attenuating environment. In the presence of significant attenuation and scatter, more extensive numerical transport calculations in place of the standard analytical approximations may be required to achieve accurate results. Numerical adjoints based on deterministic transport codes provide relatively efficient detector response calculations needed to determine the most likely location of a true source given a set of observed count rates. Probabilistic representations account for uncertainty in the source location resulting from uncertainties in detector responses and the potential for nonunique solutions. A Bayesian approach improves on previous likelihood methods for source localization by allowing the incorporation of all available information to help constrain solutions.We present an approach to localizing radiological sources that uses numerical adjoints and a Bayesian formulation and demonstrate the approach on two simple example scenarios. Results indicate accurate estimates of source locations. We briefly study the effect of neglecting the contribution of all scattered radiation in the adjoints, as analytical transport approximations do, for a case with moderately attenuating material between detectors and sources. The source location accuracy of the uncollided-only solutions appears to be significantly worse at the source strength considered here, suggesting that the higher physical fidelity that is provided by full numerical adjoint-based solutions may provide an advantage in operational settings.