ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Joel A. Kulesza
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 228-237
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12294
Articles are hosted by Taylor and Francis Online.
In the computational fluid dynamics analysis to determine the necessary cooling airflow rates in the reactor cavity of a nuclear power plant during operation, the heat generated in the sacrificial bioshield and adjacent components is a significant source term. Traditionally, a three-dimensional (3-D) flux synthesis method is used to calculate the heat generation rate in the bioshield for reactors with a cylindrical reactor cavity because there is minimal azimuthal variation. However, the AP1000™ reactor incorporates an octagonal reactor cavity design with 12 ex-core detectors, leading to potentially significant impacts on the azimuthal heat generation rate distribution. Therefore, it was of interest to benchmark the traditional flux synthesis method with full 3-D discrete ordinates methods. Because of an uncertainty in the amount of mesh refinement necessary to have confidence in the results, a sensitivity study on the mesh refinement was performed with a parallel 3-D discrete ordinates code. This allowed a comparison with an industry-standard serial 3-D discrete ordinates code in terms of both execution speed and calculated results.The results suggest that for angular positions where the flux synthesis method incorporates an axial model, there is relatively good agreement with 3-D methods (within ±20%). In areas remote from axial models, there are differences of up to a factor of 2 in a nonconservative direction. Furthermore, a recently developed parallel 3-D discrete ordinates radiation transport code was shown to produce results generally consistent with the industry-standard 3-D code used (within 2.5%). Finally, the parallel code completed its calculations in 10% of the time required by the serial code for an identically sized problem.