ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Jang Guen Park, Chan Hyeong Kim, Chul Hee Min, Jong Hwi Jeong, Jong Bum Kim, Jinho Moon, Sung-Hee Jung
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 113-117
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT175-113
Articles are hosted by Taylor and Francis Online.
In industrial-type single-photon-emission computed tomography (SPECT) systems, the use of relatively large detectors and collimators for effective detection of high-energy gammas significantly limits imaging performance, primarily because of insufficient measurement points. In the present study, a simple but very effective image-quality improvement method, the double-layer method, was tested. In this method, two layers of identical SPECT systems are employed in order to increase the number of measurement points and, thereby, improve the image quality. For experimentation, the two identical detector layers were arranged for 30 deg of rotation with respect to each other. The results showed that the double-layer method indeed significantly improves the image quality of the industrial SPECT system, substantially reducing errors in source size and location for both low-energy (99mTc) and high-energy (113mIn) gamma sources.