ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Edward J. Waller
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 89-92
Technical Note | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12275
Articles are hosted by Taylor and Francis Online.
Recent nuclear weapons testing in the limit of low-yield detonations has underscored the need to ensure that radiation detection and monitoring equipment can adequately respond to these events. Testing and validating equipment in appropriate reference fields have become difficult since the closing of the NATO primary fission spectra reference at the Aberdeen Proving Ground Fast Burst Reactor facility post-9/11. A simple and low-cost device was designed to perform testing of commercial off-the-shelf neutron detection equipment to the expected spectral shape from a low-yield nuclear weapon. By enclosing an 241AmBe (,n) neutron source within a heavy water-moderated sphere, the general shape of a 1-kiloton standard fission weapon was generated at 1 m, valid between 100 and 2000 keV. The 1-m dose rate expected from this configuration is [approximately]2.16 × 10-10 Svh-1Bq-1 , which is less than one-half of the unshielded dose rate.