ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Paul Goldhagen
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 81-88
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12274
Articles are hosted by Taylor and Francis Online.
This paper describes the design and construction of an extended-range multisphere neutron spectrometer (ERMNS), also called a Bonner sphere spectrometer, created to measure the spectrum of cosmic-ray-induced neutrons on container ships. Such measurements require a highly sensitive neutron spectrometer and can benefit from improved energy resolution. To obtain high sensitivity, spherical 3 He gas proportional counters with a diameter of 152 mm (6 in.) were developed and used. The goal for designing the moderator assemblies of the new ERMNS was to optimize its energy resolution where it is typically worst for such spectrometers - at high and medium-low energies. Absorber shells containing boron carbide were used to improve resolution at medium-low energies. The response functions of various sizes and designs of plain and modified spheres were calculated using the radiation transport code MCNPX 2.6b. The resolution of combinations of 16 spheres of candidate designs was then determined using Reginatto's RESPOW code, and the sphere designs that gave the smallest standard deviations of the RESPOW averaging kernels were selected. Compared to an ERMNS used earlier for similar measurements, resolution improved by 7 to 17% from 10 eV to 0.1 MeV and 24 to 39% from 10 MeV to 10 GeV. Bayesian parameter estimation was also used to characterize the uncertainties in spectra measured with the old and new spectrometers. The uncertainties in the fluence rates and peak energies of a typical terrestrial cosmic-ray neutron spectrum improved by 15 to 85% and 56 to 400%, respectively. These results demonstrate the utility of RESPOW and Bayesian parameter estimation for designing ERMNSs.