ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Eugene C. Fortune IV, Ian C. Gauld, C.-K. Chris Wang
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 73-76
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12272
Articles are hosted by Taylor and Francis Online.
A new generation of medical grade 252Cf sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of 252Cf makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a 252Cf brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of 1 cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured 252Cf prompt gamma spectrum as well as the true 252Cf spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new 252Cf source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates.