ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
V. Abella, R. Miró, B. Juste, G. Verdú
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 53-57
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12269
Articles are hosted by Taylor and Francis Online.
This work is focused on coupling PLanUNC (PLUNC), a set of software tools for radiotherapy treatment planning (RTP), with MCNP5 Monte Carlo N-Particle transport code, utilizing the RANDO phantom as the patient model and the Elekta Precise linac as the irradiation source for comparison. Thus, the main goal of this paper is to compare the results obtained from the default calculations of the treatment plan software with those obtained via the implementation of MCNP5 calculations. Monte Carlo techniques have been proved to be a more accurate dose calculation aid than conventional treatment planning systems, having the only limitation of computer time. The implementation of MCNP5 calculations in a commercial RTP software aims to provide more accurate dose mapping of the patient in reasonable computer times. The results obtained in this paper represent a significant contribution in the development of RTP patient dose simulations.