ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
V. Abella, R. Miró, B. Juste, G. Verdú
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 53-57
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12269
Articles are hosted by Taylor and Francis Online.
This work is focused on coupling PLanUNC (PLUNC), a set of software tools for radiotherapy treatment planning (RTP), with MCNP5 Monte Carlo N-Particle transport code, utilizing the RANDO phantom as the patient model and the Elekta Precise linac as the irradiation source for comparison. Thus, the main goal of this paper is to compare the results obtained from the default calculations of the treatment plan software with those obtained via the implementation of MCNP5 calculations. Monte Carlo techniques have been proved to be a more accurate dose calculation aid than conventional treatment planning systems, having the only limitation of computer time. The implementation of MCNP5 calculations in a commercial RTP software aims to provide more accurate dose mapping of the patient in reasonable computer times. The results obtained in this paper represent a significant contribution in the development of RTP patient dose simulations.