ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
Christopher S. Melhus
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 32-39
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Biology; Radiation Used in Medicine | dx.doi.org/10.13182/NT11-A12266
Articles are hosted by Taylor and Francis Online.
Eye plaque brachytherapy is a sight-preserving medical procedure in which radioactive sources are reproducibly arranged within a collimating source backing and temporarily sutured to the eye. The procedure was established as an alternative to enucleation or eye removal for the treatment ocular melanoma. The 1987 Collaborative Ocular Melanoma Study (COMS) standardized this treatment technique in a prospective, randomized clinical trial; however, dose calculations were performed using simple assumptions. These assumptions used the point-source dosimetry formalism, omitted dose anisotropy, and ignored the presence of dose perturbing material heterogeneities. Monte Carlo (MC) simulations from the mid-1980s to the present have critically evaluated these assumptions and indicated where improvements in practice could be made. Various investigators have used MC to evaluate plaque design, choice of source radionuclide, X-ray fluorescence from plaque components, plaque material heterogeneity attenuation, and patient tissue heterogeneity attenuation, among others. These publications are reviewed with emphasis on clinically relevant observations. In addition, MC simulations of standard COMS eye plaques using MCNP5 are made and compared to published data using other MC codes. Good agreement is observed between radiation transport codes with differences <2%, for points within the eye globe. These results indicate that historically delivered radiation doses were systematically lower than prescribed doses. Practical considerations for implementing MC calculations in the clinic are introduced, and the need for a heterogeneity-corrected treatment planning system to ensure treatment uniformity across medical centers and for different treatment techniques is discussed.