ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Christopher S. Melhus
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 32-39
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Biology; Radiation Used in Medicine | doi.org/10.13182/NT11-A12266
Articles are hosted by Taylor and Francis Online.
Eye plaque brachytherapy is a sight-preserving medical procedure in which radioactive sources are reproducibly arranged within a collimating source backing and temporarily sutured to the eye. The procedure was established as an alternative to enucleation or eye removal for the treatment ocular melanoma. The 1987 Collaborative Ocular Melanoma Study (COMS) standardized this treatment technique in a prospective, randomized clinical trial; however, dose calculations were performed using simple assumptions. These assumptions used the point-source dosimetry formalism, omitted dose anisotropy, and ignored the presence of dose perturbing material heterogeneities. Monte Carlo (MC) simulations from the mid-1980s to the present have critically evaluated these assumptions and indicated where improvements in practice could be made. Various investigators have used MC to evaluate plaque design, choice of source radionuclide, X-ray fluorescence from plaque components, plaque material heterogeneity attenuation, and patient tissue heterogeneity attenuation, among others. These publications are reviewed with emphasis on clinically relevant observations. In addition, MC simulations of standard COMS eye plaques using MCNP5 are made and compared to published data using other MC codes. Good agreement is observed between radiation transport codes with differences <2%, for points within the eye globe. These results indicate that historically delivered radiation doses were systematically lower than prescribed doses. Practical considerations for implementing MC calculations in the clinic are introduced, and the need for a heterogeneity-corrected treatment planning system to ensure treatment uniformity across medical centers and for different treatment techniques is discussed.