ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Don't forget to vote!
The 2021 ANS Election is open. This is your chance to help shape the future of your Society.
All ANS members were sent an email on February 22 with a unique username and password from Survey & Ballot Systems (SBS). If you did not receive this email or you do not have your election login information, please go to directvote.net/ANS, enter your email address that is on file with ANS, and your election login information will be emailed to you.
Joao Seco, Nick Depauw, Sylvain Danto, Harald Paganeti, Yoel Fink
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 27-31
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Biology; Radiation Used in Medicine | dx.doi.org/10.13182/NT11-A12265
Articles are hosted by Taylor and Francis Online.
Proton radiography is an imaging technique with potential application in proton radiation therapy. The ability of a proton radiograph to differentiate anatomical features in the thoracic region, such as heart, lung, rib cage, shoulder, etc., was qualitatively investigated using Monte Carlo simulations. A patient with a stage IIIA non-small cell lung cancer tumor located in the right upper lobe and mediastinum was considered for this study. The GEANT4 Monte Carlo toolkit was used to simulate proton transport through a proton nozzle and through the lung area of the patient, registering in a phase-space file the entry and exit energy, position, and motion direction of each proton. The Monte Carlo simulation ran a total of 10 million histories with the highest deliverable energy of 235 MeV at the Francis H. Burr Proton Therapy Center. The proton radiograph was then generated independently of the Monte Carlo simulation, using a numerical algorithm to input the proton position, direction of motion, and energy kept in the entry and exit phase-space files. The proton radiograph was compared to the standard portal X-ray image for tissue and tumor contrast, and for visibility relative to the background lung tissue. The preliminary results with GEANT4 showed that the proton radiography can produce images with good spatial resolution and excellent soft tissue contrast, resulting in better tumor edge localization within a soft tissue background region such as the lung.