ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Luis A. Perles, Dragan Mirkovic, Gabriel O. Sawakuchi, Uwe Titt
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 22-26
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Biology; Radiation Used in Medicine | dx.doi.org/10.13182/NT11-A12264
Articles are hosted by Taylor and Francis Online.
In this work we present a Monte Carlo study of proton irradiation of lung parenchyma phantoms for particle energies that are typically used for proton therapy, ranging from 150 to 200 MeV. The Bragg peaks of the proton beams were scored in a water phantom distal to voxelized slabs of lung material. A detailed lung parenchyma phantom was modeled and converted into a voxelized structure, with a resolution similar to that obtained by computed tomography, to study differences in the dose deposited by the proton beams distal to the phantom caused by merging small structures into larger voxels. The results show that the Bragg peak dose in water can vary by up to 11%, the distal edge degradation can be as large as 1.1 mm, and the maximum observed changes in the range at 90% of the dose are 0.4 mm in water. From our results, we conclude that computational proton dose predictions in a lung are associated with large uncertainties. To improve the accuracy of dose calculations, a more detailed model of lung parenchyma is needed.