ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Sedat Goluoglu, Lester M. Petrie, Jr., Michael E. Dunn, Daniel F. Hollenbach, Bradley T. Rearden
Nuclear Technology | Volume 174 | Number 2 | May 2011 | Pages 214-235
Technical Paper | Special Issue on the SCALE Nuclear Analysis Code System / Reactor Safety | doi.org/10.13182/NT10-124
Articles are hosted by Taylor and Francis Online.
This paper describes the Monte Carlo codes KENO V.a and KENO-VI in SCALE that are primarily used to calculate multiplication factors and flux distributions of fissile systems. Both codes allow explicit geometric representation of the target systems and are used internationally for safety analyses involving fissile materials. KENO V.a has limiting geometric rules such as no intersections and no rotations. These limitations make KENO V.a execute very efficiently and run very fast. On the other hand, KENO-VI allows very complex geometric modeling. Both KENO codes can utilize either continuous-energy or multigroup cross-section data and have been thoroughly verified and validated with ENDF libraries through ENDF/B-VII.0, which has been first distributed with SCALE 6. Development of the Monte Carlo solution technique and solution methodology as applied in both KENO codes is explained in this paper. Available options and proper application of the options and techniques are also discussed. Finally, performance of the codes is demonstrated using published benchmark problems.