ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Supathorn Phongikaroon, Steven D. Herrmann, Michael F. Simpson
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 85-93
Technical Paper | Reprocessing | doi.org/10.13182/NT174-85
Articles are hosted by Taylor and Francis Online.
In this study, a diffusion-based kinetic model essential for design and operational analysis of spent nuclear fuel reduction has been developed. The model considers the cathode side of the system to be rate limiting and deals with diffusion of lithium metal through the basket loaded with uranium oxide (UO2 or U3O8). Faraday's law was implemented into the model to observe the electrochemical effect on the model. Solutions with different conditions are developed, and detailed results are presented. These solutions were compared against experimental bench scale data. At high operating current conditions (I > 0.8 A), the model fits the data well. The fitting resulted in estimated effective lithium diffusion coefficients for high and low void fraction UO2 crushed fuels of 8.5 × 10-4 cm2/s and 2.2 × 10-4 cm2/s, respectively. The effective diffusion coefficient for U3O8 is estimated to be 8.6 × 10-4 cm2/s. In some experiments, a porous magnesium oxide basket was used for containing the U3O8. It was estimated that the lithium diffusion coefficient through this magnesia basket is 3.3 × 10-5 cm2/s.