ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Tomasz Kozlowski, Joanna Peltonen
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 51-63
Technical Paper | Thermal Hydraulics | dx.doi.org/10.13182/NT11-A11679
Articles are hosted by Taylor and Francis Online.
The present study is concerned with the capability of a coupled neutron-kinetic/thermal-hydraulic code system RELAP5/PARCS for the numerical prediction of global core stability condition and instability transients. The work is motivated by the need to assess the safety significance of a number of stability transients that trigger core instability and challenge reactor protection systems. The technical approach adopted is done both to learn from real stability events and to perform analysis of idealized well-defined transients in a real plant and core configuration. In this paper, we show that the code system can serve as a unique and powerful tool to provide a consistent and reasonably reliable prediction of stability boundary even in complex plant transients. However, the prediction quality of the instability transients, i.e., core behavior without scram - namely, parameters of the limit cycle - remains questionable. We identify two main factors for future studies (two-phase flow regimes in oscillatory flow and algorithm for effective grouping of thermal-hydraulic channels) as key to enhancing the predictive capability of the existing coupled code system for boiling water reactor stability.