ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Tomasz Kozlowski, Joanna Peltonen
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 51-63
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT11-A11679
Articles are hosted by Taylor and Francis Online.
The present study is concerned with the capability of a coupled neutron-kinetic/thermal-hydraulic code system RELAP5/PARCS for the numerical prediction of global core stability condition and instability transients. The work is motivated by the need to assess the safety significance of a number of stability transients that trigger core instability and challenge reactor protection systems. The technical approach adopted is done both to learn from real stability events and to perform analysis of idealized well-defined transients in a real plant and core configuration. In this paper, we show that the code system can serve as a unique and powerful tool to provide a consistent and reasonably reliable prediction of stability boundary even in complex plant transients. However, the prediction quality of the instability transients, i.e., core behavior without scram - namely, parameters of the limit cycle - remains questionable. We identify two main factors for future studies (two-phase flow regimes in oscillatory flow and algorithm for effective grouping of thermal-hydraulic channels) as key to enhancing the predictive capability of the existing coupled code system for boiling water reactor stability.