ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Vincent Hedberg, Mikhail Morev, Marco Silari, Zuzana Zajacová
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 327-331
Technical Note | Radiation Measurements and Instrumentation | doi.org/10.13182/NT11-A11666
Articles are hosted by Taylor and Francis Online.
Predictions of high-energy hadron activation of liquid argon in the calorimeter of A Thoroidal LHC ApparatuS (ATLAS) were carried out by folding particle flux spectra with the radionuclide production cross sections. Calculations were performed with a wide array of input data. Six sets of cross sections were folded with two sets of particle flux spectra, and the results were compared. The particle fluxes were obtained from simulations with the Monte Carlo radiation transport codes FLUKA and GCALOR. The cross-section sets were calculated according to the Rudstam and the Silberberg-Tsao formulas; taken from the Japanese Evaluated Nuclear Data Library (JENDL) and the Medium Energy Nuclear Data Library (MENDL); obtained from the Large Hadron Collider air activation studies; and compiled from various, predominantly experimental, sources.