ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
S. R. Boddu, V. R. Gutti, R. M. Meyer, T. K. Ghosh, R. V. Tompson, S. K. Loyalka
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 318-326
Technical Paper | Miscellaneous | dx.doi.org/10.13182/NT11-A11665
Articles are hosted by Taylor and Francis Online.
Nanoparticles can form during nuclear accidents as well as during normal nuclear reactor operations and can be both radioactive and nonradioactive. It is important to understand particle size characteristics, transport properties, and deposition in order to better predict the behaviors of, and effects due to, these particles in a reactor. Fission products can deposit (adsorb/absorb) on the graphite dust in the core [an amount of carbon dust is present in the Pebble Bed Modular Reactor (PBMR) because of graphite sphere abrasion] and can also be carried by the helium flow (together with some dust). Generating nanoparticles of desired shape, size, and purity for experimental purposes is difficult, and hence, there is a need for new and refined synthesis techniques. Nanoparticle generation using high-voltage electric sparks has become a technique of interest for a wide range of conducting materials, and particles with sizes ranging from a few nanometers up to microns have been generated in this manner in an aerosol state. Our purpose in this paper is to report on the generation, collection, and characterization of carbon nanoparticles. We have used a spark generator and a thermophoretic deposition cell, as well as environmental scanning electron microscopy, transmission electron microscopy, and scanning mobility particle spectrometry. We have explored a number of experimental conditions, and we find that one can generate and effectively collect test particles with a variety of different useful characteristics. We also discuss some computational fluid dynamics simulations of particle deposition in the thermophoretic deposition cell.