ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Adam Davis, Donald J. Dudziak, Man-Sung Yim, David McNelis, H. Omar Wooten
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 270-288
Technical Paper | Radiation Protection | doi.org/10.13182/NT11-110
Articles are hosted by Taylor and Francis Online.
In radiation protection, photon buildup factors provide a convenient method for calculating dose and exposure response after various shielding configurations, as well as information about the behavior of radiation in these configurations. Though many situations call for multilayer shields, few databases and derived analytical formulas for photon buildup in multilayer shields exist. This research develops buildup factors and analytical fits to these data for slab-geometric, dual-layer shields composed of various materials. The photon buildup factors were calculated for monoenergetic photon sources incident on two-layer shields of various combinations of lead, polyethylene, aluminum, and stainless steel for thicknesses varying between 2 and 20 mean free paths using the Parallel Time Independent Sn (PARTISN) discrete ordinates code. The Gauss-Lobatto S100 quadrature was used with a 244-energy-group structure and coupled photon and electron cross sections. Data from PARTISN calculations were then benchmarked for representative cases using MCNP5, and fits to a new analytical formula were developed using Mathematica 6.0.