ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Constantine P. Tzanos, Maxim Popov, Fred Mendonca
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 239-250
Technical Paper | One-Phase Fluid Flow | doi.org/10.13182/NT11-A11659
Articles are hosted by Taylor and Francis Online.
To assess the accuracy of large eddy simulation (LES) predictions for a flow in a rod bundle, analyses were performed with different parameters of a constant-coefficient Smagorinsky LES model for a flow in a square-pitch rod bundle, and model predictions are compared with experimental data. The parameters considered are the grid structure, the value of the Smagorinsky constant, the damping of the eddy viscosity, and the size of the channel geometry. Because LES simulations are computationally very demanding, for adequately accurate predictions the grid structure needs to be well optimized in terms of cell size, aspect ratio, and cell orthogonality. The use of hanging nodes can significantly reduce the number of cells without a significant penalty on the accuracy of predictions. For this flow, the change in the value of the Smagorinsky constant from 0.14 to zero did not have a drastic effect on predictions. Although, overall, Lilly damping gave slightly better predictions than van Driest damping, both damping functions gave similar predictions. The LES predictions for the mean axial velocity, for the fluctuating velocity component in the main flow direction, and for the Reynolds stresses are in very good agreement with the experimental measurements. There is also good agreement between predictions and measurements for the wall shear stress, but there is a significant discrepancy between predictions and measurements for the fluctuating velocity components in the lateral directions (u and v).