ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Steven J. Piet, Brent W. Dixon, Jacob J. Jacobson, Gretchen E. Matthern, David E. Shropshire
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 227-238
Technical Paper | Fuel Cycles and Their Characteristics | doi.org/10.13182/NT11-A11658
Articles are hosted by Taylor and Francis Online.
Nothing in life is static, so why compare fuel cycle options using only static, equilibrium analyses? Competitive industry looks at how new technology options might displace existing technologies and change how existing systems work. So too, our years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they might work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights within the context of the 2005 objectives and goals of what was then the U.S. Advanced Fuel Cycle Initiative (AFCI). The intent here is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. (The specific options change over time; the objective in this paper is to look for more generic insights.) We organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe "lessons learned" from dynamic simulations but attempt to answer the "so what" question by using this context; i.e., how do the lessons learned matter relative to goals and objectives not just to technological observations? The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.