ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Experts talk on developing the isotope supply chain
The American Nuclear Society recently hosted a webinar, “Securing the Isotope Supply Chain: A Growing Global Challenge,” featuring experts from a variety of private and public institutions who discussed the current state of the isotope supply chain, the necessity for strengthening that chain, and the tools available to develop a more robust system.
To watch the full webinar, click here.
Yosuke Iwamoto, Mitsuhiro Fukuda, Yukio Sakamoto, Atsushi Tamii, Kichiji Hatanaka, Keiji Takahisa, Keiichi Nagayama, Hiroaki Asai, Kenji Sugimoto, Isamu Nashiyama
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 210-217
Technical Paper | Techniques for Measurements of Nuclear Data | doi.org/10.13182/NT11-A11550
Articles are hosted by Taylor and Francis Online.
The 30-deg white neutron beam at the Research Center for Nuclear Physics (RCNP) cyclotron facility has been characterized as a probe suitable for testing of single-event effects (SEE) in semiconductor devices in the neutron energy range from 1 to 300 MeV using the 392-MeV proton incident reaction on a 6.5-cm-thick tungsten target. The neutron spectrum obtained by time-of-flight measurements reproduced the terrestrial neutron flux distribution at sea level, and neutron intensity increased by a factor of 1.5 × 108 became available. The average neutron intensity and spectrum in the energy region from 10 to 100 MeV at RCNP were almost the same as those at the Weapons Neutron Research (WNR). The calculated RCNP neutron flux using Particle and Heavy Ion Transport code System (PHITS) generally agreed with the measured RCNP data within a factor of 2. The neutron density per pulse at RCNP, which is around 500 times lower than that for WNR, has the advantage in reduction of the pileup probability of single-event transient currents and false multiple-bit upsets. Such conditions at RCNP are suitable for accelerated SEE testing to get meaningful results in a realistic time frame.