ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Gokul Vasudevamurthy, Travis W. Knight, Thad M. Adams, Elwyn Roberts
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 200-209
Technical Paper | Materials for Nuclear Fuels | doi.org/10.13182/NT11-A11549
Articles are hosted by Taylor and Francis Online.
Dispersed fuel composites consisting of uranium carbide particles (microspheres) in a zirconium carbide (inert) matrix were fabricated and characterized. Advanced fuels including refractory inert matrix fuels are being considered for gas fast reactors, which can accommodate a variety of feed materials including recycled transuranics that include minor actinides for incineration and high-level waste reduction. The particles for this effort were fabricated by employing a custom built rotating electrode machine. This process employed a uranium carbide electrode manufactured by combustion synthesis of uranium hydride and graphite powders. Two process parameters, namely, arc intensity and rotational speed, were varied to assess their effects on the size of the particles produced. The particles were characterized for microstructure, density, and composition (homogeneity). These particles were mixed with pure zirconium and graphite powders in different matrix to particle volumetric ratios of 90/10, 80/20, and 70/30 and inductively heated to 1850°C to initiate combustion synthesis to produce composites of zirconium carbide with the embedded uranium carbide particles. The aim was to limit process temperature and in particular process time, bearing in mind the possible future extensions of these processes to minor actinide-bearing fuels and also to avoid any changes in the structural integrity of the particles and large-scale diffusion of uranium into the matrix. The composites were characterized for microstructure, phase composition, density, and porosity distribution. The results are presented.