ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Jack D. Law, David H. Meikrantz, Troy G. Garn, Lawrence L. Macaluso
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 191-199
Technical Paper | High Level Waste | doi.org/10.13182/NT11-A11548
Articles are hosted by Taylor and Francis Online.
Advanced designs of spent nuclear fuel recycling processes and radioactive waste treatment processes are expected to include more ambitious goals for aqueous-based separations, including higher separation efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, annular centrifugal contactors are destined to play a more important role for such future processing schemes. Pilot-scale testing will be an integral part of development of many of these processes. An advanced design for remote maintenance of pilot-scale centrifugal contactors has been developed and a prototype module fabricated and tested for a commercially available pilot-scale centrifugal contactor (CINC V-02, 5-cm rotor diameter). Advanced design features include air-actuated clamps for holding the motor/rotor assembly in place, an integral electrical connection, upper flange O-rings, a welded bottom plate, a lifting bale, and guide pins. These design features will allow for rapid replacement of the motor/rotor assembly, which can be accomplished while maintaining process equilibrium in the operating contactors during replacement of a unit. This means that fluids in the operating contactors remain at equilibrium with respect to composition and that process solutions are ready to resume discharge when the contactor is replaced and feed solutions are restarted. Hydraulic testing of a three-stage prototype unit was also performed to verify that design changes did not impact performance of the centrifugal contactors. Details of the pilot-scale remote maintenance design, results of testing in a remote mock-up test facility, and results of hydraulic testing of the advanced design are provided.