ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Masaumi Nakahara, Tsutomu Koizumi, Kazunori Nomura
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 183-190
Technical Paper | Reprocessing | doi.org/10.13182/NT11-A11547
Articles are hosted by Taylor and Francis Online.
There is concern that a binary salt of Pu(IV) and Cs forms deposits on the uranyl nitrate hexahydrate (UNH) crystal formed in the dissolver solution for U crystallization containing Cs. Precipitation behavior of dicesium tetravalent plutonium hexanitrate, Cs2Pu(NO3)6, in the U crystallization process is studied. In this work, the solubility of Cs2Pu(NO3)6 was measured in a HNO3 solution, and influence of Pu valence and Cs concentration in the dissolver solution on decontamination factors (DFs) of Pu and Cs in the crystal was examined in the U crystallization process. The solubility of Cs2Pu(NO3)6 increased with a decrease in the concentration of HNO3 in the mother liquor and a rise in temperature of the mother liquor. In the U crystallization process, although the DF of Cs was low where there was Pu(IV) since the two were difficult to separate in the feed solution, Cs was removed thoroughly where there was Pu(VI) in the feed solution. The Cs concentration in the feed solution affected the DFs of Pu and Cs after the UNH crystal was washed. The DFs of Pu and Cs had a tendency to decrease with increase of Cs concentration in the feed solution, because large amounts of Cs+ contributed to the formation of Cs2Pu(NO3)6.