ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Robert O. Hoover, Supathorn Phongikaroon, Michael F. Simpson, Tae-Sic Yoo, Shelly X. Li
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 176-182
Technical Paper | Pyrometallurgical Reprocessing | doi.org/10.13182/NT11-A11546
Articles are hosted by Taylor and Francis Online.
A computational model of the Mark-IV electrorefiner is currently being developed as a joint project between Idaho National Laboratory, Korea Atomic Energy Research Institute, Seoul National University, and the University of Idaho. As part of this model, the two-dimensional potential and current distributions within the molten salt electrolyte are calculated for U3+ , Zr4+ , and Pu3+ along with the total distributions, using the partial differential equation solver of the commercial Matlab software. The electrical conductivity of the electrolyte solution is shown to depend primarily on the composition of the electrolyte and to average 205 mho/m with a standard deviation of 2.5 × 10-5% throughout the electrorefining process. These distributions show that the highest potential gradients (thus, the highest current) exist directly between the two anodes and cathode. The total, uranium, and plutonium potential gradients are shown to increase throughout the process, with a slight decrease in that of zirconium. The distributions also show small potential gradients and very little current flow in the region far from the operating electrodes.