ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Matthew Memmott, Jacopo Buongiorno, Pavel Hejzlar
Nuclear Technology | Volume 173 | Number 2 | February 2011 | Pages 162-175
Technical Paper | Fuel Design/Defects/ Examination | doi.org/10.13182/NT11-A11545
Articles are hosted by Taylor and Francis Online.
Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reducing the pressure drop in the sodium-cooled fast reactor, respectively. The concepts were explored for both high- and low-conversion core configurations and for metal and oxide fuels. The annular fuel concept is best suited for low-conversion metal-fueled cores, where it can enable a power uprate of [approximately]20%; the magnitude of the uprate is limited by the fuel-clad chemical interaction temperature constraint during a hypothetical flow blockage of the inner annular channel. The bottle-shaped fuel concept is best suited for tight high-conversion ratio cores, where it can reduce the overall core pressure drop in the fuel channels by >30%, with a corresponding increase in core height between 15 and 18%. A full-plant RELAP5-3D model was created to evaluate the transient performance of the innovative fuel configurations during the unprotected transient overpower and station blackout. The transient analysis confirmed the good thermal-hydraulic performance of the annular and bottle-shaped fuel designs with respect to the reference case with traditional solid fuel pins.