ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J-F. Villard, M. Schyns
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 86-97
Technical Paper | NPIC&HMIT Special / Radiation Measurements and Instrumentation | doi.org/10.13182/NT11-A11487
Articles are hosted by Taylor and Francis Online.
Optimizing the life cycle of nuclear systems under safety constraints requires high-performance experimental programs to reduce uncertainties on margins and limits. In addition to improvement in modeling and simulation, innovation in instrumentation is crucial for analytical and integral experiments conducted in research reactors.Significant efforts have been made recently to improve in-pile instrumentation for the benefit of material testing reactors. The quality of nuclear research programs obviously relies on an excellent knowledge of their experimental environment, which constantly calls for better online determination of neutron and gamma flux. But the combination of continuously increasing scientific requirements and new experimental domains - brought, for example, by Generation-IV programs - also necessitates major innovations for in-pile measurements of temperature, dimensions, pressure, or chemical analysis in innovative mediums.To face these challenges, the CEA (French Nuclear Energy Commission) and the SCK.CEN (Belgian Nuclear Research Centre) have combined their efforts and now share common developments through a Joint Instrumentation Laboratory.Significant advances have thus been obtained in the field of in-pile measurements, on one hand by the improvement of existing measurement methods (for example, a unique fast neutron flux measurement system using fission chambers with 242Pu deposit and a specific online data processing has been developed), and on the other hand by the introduction in research reactors of original techniques such as optical dimensional measurements or acoustical fission gas release measurements.