ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
M. Humberstone, B. Wood, J. Henkel, J. W. Hines
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 35-45
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11482
Articles are hosted by Taylor and Francis Online.
Models used for system monitoring must strike a balance between stability and elasticity. Ideally, a model should adapt to new operating conditions without losing the ability to differentiate faults from nominal conditions. To this end, an adaptive nonparametric model (ANPM) has been developed for integrated monitoring, diagnostic, and prognostic use on small to medium size reactors. This paper gives an overview of the development of the ANPM with two example applications. The ANPM's original intent is to adapt a nonparametric model's memory matrix from data created using a first principle model (FPM) to the system's actual unfaulted data. This would be useful for monitoring new system designs from first construction and operation when the only available data are from FPMs. The FPM's data are used to build the best possible models initially, but during the system's operation, new data can be collected that are more accurate for future empirical model predictions. The use of the ANPM is demonstrated on two systems. The first system is a heat exchanger model that is modeled in SIMULINK with both a low-fidelity and a high-fidelity simulation. The second system is a flow loop, a physical system at The University of Tennessee that is also modeled in SIMULINK. The results of testing the ANPM on nonfaulted conditions for the heat exchanger model and the flow loop are given. Areas of future work and development are outlined.