ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
M. Humberstone, B. Wood, J. Henkel, J. W. Hines
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 35-45
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11482
Articles are hosted by Taylor and Francis Online.
Models used for system monitoring must strike a balance between stability and elasticity. Ideally, a model should adapt to new operating conditions without losing the ability to differentiate faults from nominal conditions. To this end, an adaptive nonparametric model (ANPM) has been developed for integrated monitoring, diagnostic, and prognostic use on small to medium size reactors. This paper gives an overview of the development of the ANPM with two example applications. The ANPM's original intent is to adapt a nonparametric model's memory matrix from data created using a first principle model (FPM) to the system's actual unfaulted data. This would be useful for monitoring new system designs from first construction and operation when the only available data are from FPMs. The FPM's data are used to build the best possible models initially, but during the system's operation, new data can be collected that are more accurate for future empirical model predictions. The use of the ANPM is demonstrated on two systems. The first system is a heat exchanger model that is modeled in SIMULINK with both a low-fidelity and a high-fidelity simulation. The second system is a flow loop, a physical system at The University of Tennessee that is also modeled in SIMULINK. The results of testing the ANPM on nonfaulted conditions for the heat exchanger model and the flow loop are given. Areas of future work and development are outlined.