ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
J. A. Antonino-Daviu, M. Riera-Guasp, M. Pineda-Sanchez, R. Puche-Panadero, R. B. Pérez, P. Jover-Rodriguez, A. Arkkio
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 26-34
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | dx.doi.org/10.13182/NT11-A11481
Articles are hosted by Taylor and Francis Online.
The work carried out by the authors consists of applying a modern time-frequency decomposition (TFD) tool, the Hilbert-Huang Transform (HHT), to the diagnosis and the evaluation of electromechanical faults in induction machines. These machines are widely spread nowadays, being involved in many industrial processes as well as in power generation installations such as nuclear plants. The core of the proposed methodology is the analysis of the current demanded by the stator winding of the machine during its connection process known as startup transient. Once the current is analyzed, characteristic patterns caused by the evolution of certain components created by the corresponding faults are identified; this evolution is due to the dependence of these fault-related components on the slip s, a quantity varying during a direct startup transient from 1 to near 0. In the present paper, the HHT is applied to the diagnosis of two different faults: rotor bar breakages and mixed eccentricities. In comparison with other TFD tools, the HHT provides certain advantages that are discussed in the work. The validity of the approach is proven through several experimental tests on real machines with different sizes and characteristics. The results show the potential of the methodology for reliable fault diagnosis and for correct discrimination between the different electromechanical failures.