ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Steven A. Arndt, Alan Kuritzky
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 2-7
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | dx.doi.org/10.13182/NT11-A11478
Articles are hosted by Taylor and Francis Online.
For the past several years, the U.S. Nuclear Regulatory Commission and its contractors have been actively engaged in research to determine the capabilities and limitations of the state of the art of digital systems risk and reliability modeling. This program was developed to assess the capabilities of various modeling methods and to develop regulatory acceptance criteria for the use of digital system risk and reliability modeling in risk-informing digital system reviews. The program investigated both traditional and advanced modeling methods for the evaluation of digital system risk and reliability in the context of including these methods in current generation probabilistic risk assessments (PRAs). The methods investigated included traditional event tree/fault tree analysis, Markov modeling, and dynamic flow graph methodology. As part of the investigation into the capabilities of these methods, we have also reviewed the availability, capability, and practicality of the needed supporting data and analysis methods, including failure mode identification, data generation methods, and uncertainty analysis. The review indicated that for some digital systems traditional PRA modeling methods may be appropriate but that a number of potential issues exist that must be carefully evaluated in modeling these systems. Both the traditional and advanced modeling methods review found that the order of component failures can be important and that simulation either as part of the reliability model or as part of the supporting analysis is needed to determine the effects of combinations of component failures and the timing of digital system failures. Finally, the research showed that better data and models of fault-tolerant features of digital systems and software are needed to support more complete and accurate modeling of digital instrumentation and control for use in nuclear power plant PRAs.