ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Steven A. Arndt, Alan Kuritzky
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 2-7
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11478
Articles are hosted by Taylor and Francis Online.
For the past several years, the U.S. Nuclear Regulatory Commission and its contractors have been actively engaged in research to determine the capabilities and limitations of the state of the art of digital systems risk and reliability modeling. This program was developed to assess the capabilities of various modeling methods and to develop regulatory acceptance criteria for the use of digital system risk and reliability modeling in risk-informing digital system reviews. The program investigated both traditional and advanced modeling methods for the evaluation of digital system risk and reliability in the context of including these methods in current generation probabilistic risk assessments (PRAs). The methods investigated included traditional event tree/fault tree analysis, Markov modeling, and dynamic flow graph methodology. As part of the investigation into the capabilities of these methods, we have also reviewed the availability, capability, and practicality of the needed supporting data and analysis methods, including failure mode identification, data generation methods, and uncertainty analysis. The review indicated that for some digital systems traditional PRA modeling methods may be appropriate but that a number of potential issues exist that must be carefully evaluated in modeling these systems. Both the traditional and advanced modeling methods review found that the order of component failures can be important and that simulation either as part of the reliability model or as part of the supporting analysis is needed to determine the effects of combinations of component failures and the timing of digital system failures. Finally, the research showed that better data and models of fault-tolerant features of digital systems and software are needed to support more complete and accurate modeling of digital instrumentation and control for use in nuclear power plant PRAs.