ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
Behrooz Khorsandi, Jonathan Kulisek, Thomas E. Blue, Don Miller, Jon Baeslack, Steve Stone
Nuclear Technology | Volume 172 | Number 3 | December 2010 | Pages 295-301
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT10-A10938
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) is a promising semiconductor material for use in solid-state radiation detectors. SiC's wide bandgap makes it an appropriate semiconductor for high-temperature applications. Because of the annealing process that occurs at temperatures above 150°C for SiC, SiC semiconductors may function in a radiation environment for longer periods of time at elevated temperatures than at room temperature. Unlike thermal annealing effects that can act to improve the electrical characteristics of SiC, fast neutrons create displacement damage defects in SiC Schottky diodes through scattering and thus rapidly degrade the electrical properties of the SiC diodes.We irradiated SiC Schottky diodes at the Ohio State University Research Reactor at room temperature with neutrons for displacement damage doses (Dd's) ranging from 7.6 × 1010 to 3.8 × 1011 MeV/g. After irradiation, we annealed the diodes, at either 175 or 300°C. We measured the SiC diodes' forward bias resistances at different steps of the experiments. To perform the experiments and study the results meaningfully, we performed a full factorial design of experiments with two factors: Dd and annealing temperature. The Dd factor had five levels of treatment, and the temperature had three levels of treatment. We did one-way and two-way analysis of variance to understand which factor is more dominant and whether or not the interaction effects are significant. It was determined that for Dd up to 2.3 × 1011 MeV/g the fractional damage recovery decreases with increasing Dd, but that Dd is not a significant factor affecting further changes in damage recovery for Dd's ranging from 2.3 × 1011 to 3.8 × 1011 MeV/g when the annealing temperature varies between 175 and 300°C. For high Dd (greater than 2.3 × 1011 MeV/g) neutron irradiations, the annealing temperature significantly affects the damage recovery.